HDF5 Performance Framework Back-End
System

Hyo-Kyung Lee

This is supplemental documentation to the HDF5 Performance Framework(HPF) user
manual covering the HPF back-end system in depth. It is an essential guide for the HPF
developers and advanced users who are in charge of making HPF system up and running.

1 Introduction to HPF Back-End System

The HPF back-end system is primarily responsible for scheduling and executing benchmark
programs. In addition, it is responsible for detecting any system environment change on a
target platform as well as notifying benchmark results to HPF users via daily e-mail if there's
any performance degradation or improvement.

UNIX shell scripts and PHP scripts are used to implement the HPF back-end system. Thus,
PHP interpreter is not an option but must be installed in advance. The standard UNIX cron
daemon will execute the HPF back-end scripts once they are submitted as a cron job.

2 Anatomy of Shell Script

There are three shell scripts for HDF5 version 1.6, 1.8 and 1.9. They are all essentially the
same in structure and function but they are separated for the scheduling and customization
purposes.

2.1 Customization

In terms of customization perspective, each shell script has 2 parts. The head part is for
customization and the body part requires a minimal customization. The shell script detects
system environment changes, builds the HDF5 library and the benchmark programs, tests
them, stores their results to database and reports results to users.

The head part starts with the following comment block:
HUHHHBRHHHBRBHHHBRHHH VR RHHH BB R HH B R RS H AR BB HHH BB S HHHRRH#
Please edit the following parameters before you submit this script into cron.
HUHHHBRHHHBRBHHHBRHHH VR RHHH BB R HH B R RS H AR BB HHH BB S HHHRRH#

The customization begins with the optional path setting. All UNIX commands (e.g. svn,

php, (g)cc, (g)make) that are necessary to build the HDF5 library and the HPF benchmark
progrmas must be accessible through the PATH environment variable.

PATH=/usr/local/bin:/usr/ucb/bin
export PATH

Set the HDFS5 library version ---it'll be 1.6, 1.8 or 1.9.
VERSION="1.6"

Set the directory for temporary files. Please do not set it under HDF5_PREFIX(see below).
It should never be deleted by this script.

TEMP="/tmp/chicago_$VERSION"
Set cc/c++ or gcc/g++ version command. Solaris may require "cc -V" instead of "gcc -v".

CCv="gcc -v"
CPPV="g++ -v"

Set the HDF5 Installation Directory. This directory will be cleaned everyday.
HDF5_PREFIX="/home/local/hyoklee/chicago/hdf5-$VERSION"
Set the configuration option for building the HDF5 library.

HDF5_OPTION="--disable-shared --enable-cxx --enable-production --
prefix=$HDF5_PREFIX"

Set the configuration option for building the HPF.

PERF_OPTION="--disable-shared --prefix=/home/local/hyoklee/chicago --with-
hdf5=$HDF5_PREFIX --with-mysqlclient=/hdfdap/mysql"

Set the path to the HPF source.
PERF_SRC="/home/local/hyoklee/src/chicago/trunk/hdf5perflib/"

Set the path to php command. In the following example, it's simply set as "php" since it
can be found from the default PATH environment.

e.g. PHP=/opt/csw/bin/php
PHP="php"

Set the path to performance framework PHP source. This directory must have all PHP
scripts used in the HPF.

PHP_SRC="/home/local/hyoklee/src/chicago/trunk/hdf5perfphp/hdf/"
Set the path to the make command.

e.g. MAKE=/usr/ccs/bin/make
MAKE="gmake"

The back-end script will run the same test 3 times and record the best performance
because test results may be affected by the system load. Set the interval in seconds
between trials.

600 seconds = 10 minutes
INTERVAL="600"

Set the correct usage option of the diff command. Solaris doesn't require "-u" option in
diff. This command is used for detecting system environment changes like OS version and
gcc version.

DIFF="diff -u"

Finally, set the correct path for subversion repository. This must change according to the
HDFS5 library version the back-end script is going to build and test.

SVN_URL="http://svn.hdfgroup.uiuc.edu/hdf5/branches/hdf5_1_8"
The body part starts with the following comment block:

HUHHHBHHBRHA BB R H BB HABBHAHBHHBRHA B RHHBRHA B BHHRHHBRHABBHH BB HBRHH R H SR HHH
Please DO NOT edit lines below.
HUHHHBHHBRHA BB R H BB HABBHAHBHHBRHA B RHHBRHA B BHHRHHBRHABBHH BB HBRHH R H SR HHH

No more customization is necessary after the above comment block.

2.2 Functionality

In terms of functionality, each shell script has 3 parts.

The first part contains the environment change detection. This function is achieved mainly
through a cycle of executing a certain shell command, redirecting the result into a
temporary text file and checking difference using the standard UNIX diff command. Let's go
over the environment change detection cycle with excerpt.

Existing text outputs are saved first for the upcoming comparison:

if [-e $TEMP/compiler_options_perf.txt]; then
mv $TEMP/compiler_options_perf.txt $TEMP/compiler_options_perf.old.txt
fi

Here's the part of getting environment data by executing commands and redirecting the
output:

Get today's environment data.

uname -a >& $TEMP/uname.txt

$CCV >& $TEMP/cc_version.txt

$CPPV >& $TEMP/cpp_version.txt

echo $HDF5_OPTION > $TEMP/config_hdf5.txt
echo $PERF_OPTION > $TEMP/config_perf.txt

Finally, diff command is run in order to count how many changes are detected.

If there is no change in all 5 system environment categories, nothing will be recorded.

OUTPUT=$TEMP/diff.out
y=0

Check today's environments against yesterday's environments.
if [-e $TEMP/uname.old.txt]; then

diff -u $TEMP/uname.txt $TEMP/uname.old.txt > $OUTPUT

if [-s $OUTPUT] ; then

y="expr $y + 1°

fi

else

y="expr $y + 1°

fi

The second part has a loop that iterates the same benchmark 3 times to ensure that test
results are not susceptible to the system's load average.

x=0

while [$x -1t 3]
do

$MAKE check
x="expr $x + 1°
sleep $INTERVAL
done

$MAKE distclean

The last part records the test results (TestInstance.php) and determines the winner from
the 3 trials in the previous part (checker_best.php).

$PHP $PHP_SRC/TestInstance.php $PERF_SRC/results.xml
$PHP $PHP_SRC/checker_best.php $VERSION >& /dev/null

3 Scheduling Cron Job

In general, a back-end script consumes a lot of system resources since it rebuilds the
HDFS5 library and most HDF5 benchmark programs involve heavy file I/O operations. Thus,
scheduling a set of cron jobs for three back-end scripts requires a careful consideration. As
a rule of thumb, there are three things that you should keep in mind.

First, it is best to allocate it at the time when the system is not busy. Although the back-
end script is designed to run the benchmark programs three times with interval, you cannot
guarantee the best performance if they are all executed when a system load is very high.
The ideal case is to have a dedicated machine that runs the back-end script only and
nothing else from other users.

Second, it is important to avoid overlap among back-end scripts of different HDF5
versions: 1.9, 1.8 and 1.6. It is good to have an enough system cool-down period between
two scripts to get the most accurate measurement of benchmark programs. For example, if
one script takes about 1 hour 30 minutes, it's good to schedule three cron jobs at 6:00pm,
8:00pm and 10:00pm for each HDF5 version.

Finally, all back-end scripts should finish before the end of a day(i.e. 11:59pm) since
timestamps are critical in calculating the best record from DB and generating a performance
warning report.

The cron jobs for sync.php and mailer.php need to be placed only one machine that has
a full access to MySQL DB since they should run only once per day. They aggregate and fix
ids for the results stored in DB and send an e-mail if there's any performance issue. It is
important to note that, unlike other PHP scripts, they look for the time stamp of previous
day in DB to ensure that all performance results are recorded and ready for a warning
analysis. The installation of cron job for mailer.php is optional since there's an equivalent
HPF front-end script called report.php which is accessible from the web server.

Here's a real example of scheduling used on hdfdap machine.

00 18 * * * Jusr/local/home/hyoklee/src/chicago/trunk/hdf5perfphp/run_1.6.hdfdap.sh
00 20 * * * /usr/local/home/hyoklee/src/chicago/trunk/hdf5perfphp/run_1.8.hdfdap.sh
00 22 * * * Jusr/local/home/hyoklee/src/chicago/trunk/hdf5perfphp/run_1.9.hdfdap.sh
15 01 * * * Jusr/bin/php /usr/local/home/hyoklee/src/chicago/trunk/hdf5perfphp/hdf/
sync.php

55 01 * * * Jusr/bin/php /usr/local/home/hyoklee/src/chicago/trunk/hdf5perfphp/hdf/
mailer.php

All shell scripts are expected to finish before 11:59pm and mailer.php will generate a
warning report on the next day based on the results of previous day. The sync.php must
be called before the mailer.php.

4 PHP Scripts

There are many PHP scripts that are invoked inside the HPF back-end system and it is
beneficial to understand their roles. In general, anything DB related function of back-end
script is written in PHP for fast and portable implementation.

4.1 svn.php

The back-end shell script calls this PHP file first to record the subversion revision number
of the HDF5 library it checked out.

svh co $SVN_URL svn | grep "Checked out revision" | cut -f4 -d ' ' | cut -f1 -d '.' > $TEMP/
svn.log

$PHP $PHP_SRC/svn.php $VERSION " cat $TEMP/svn.log’™ >& /dev/null
rm -rf $TEMP/svn.log

4.2 TestInstance.php

This is a new PHP file that was added in June 2009. This file is called inside the back-end
shell script to solve the problem of the MySQL C client library.

In older HDF Performance Framework, test instances used to call the MySQL C client
library directly. However, calling MySQL client APIs directly by benchmark programs often
failed to write the results into MySQL server DB correctly for many reasons. It also created
duplicate test routines and action names with different ids which gave ended up adding the
sync.php script.

To solve the above chronic problem, we decided to avoid the use of MySQL client library
directly by HPF C/C++ APIs. Instead, all benchmark programs will create a local XML file
that will be transferred into the MySQL database later by a cron job. In this way, even if
there's an error on MySQL server DB, we can have a local copy of test results and it can be
delivered into DB later via PHP cron job when the MySQL is back.

Another benefit is that we don't have to worry about updating the APIs related MySQL
client library inside HPF for future maintenance since all DB transactions will be handled by
PHP-MySQL module. This will ensure the maximum portability of the HPF system.

This script reads an XML file and parses it. It is important to set the path and file hame of
the XML file correctly inside the benchmark programs.

$PHP $PHP_SRC/TestInstance.php $PERF_SRC/results.xml

This script needs some improvement since it cannot handle TestRoutine and TestAction tag
inside the XML file. It should check the existing routine/action names and create new ones if
necessary.

4.3 checker_best.php

If you take a look at the back-end script near line 130, there's a code that calls the
checker_best.php:

$PHP $PHP_SRC/checker_best.php $VERSION >& /dev/null

This checker_best.php script finds the best value from the table TestInstance and
duplicate the best record into a separate table called TestInstanceBest.
If there's a tie in any record, it simply copies one that has the lowest TestInstance_ID.
Since a back-end script runs the same benchmark program 3 times, there should be 3 times
more entries in the TestInstance table than in the TestInstanceBest table.

The real computation for determining the best record is done within a function called
get_best _record() in the analyzer.php. The checker_best.php simply includes the
analyzer.php at the beginning.

4.4 environment.php

If you take a look at the back-end script near line 208, there's a code that calls the
environment.php:

$PHP $PHP_SRC/environment.php $VERSION $TEMP/uname.txt $TEMP/cc_version.txt
$TEMP/cpp_version.txt $TEMP/config_hdf5.txt $TEMP/config_perf.txt $TEMP/
compiler_options_hdf5.txt $TEMP/compiler_options_perf.txt >& /dev/null

The environment.php records any system environment changes into a MySQL DB table
called environment. Such changes include C/C++ compiler version, HDF5/HPF configuration
option and HDF5/HPF compiler option.

4.5 sync.php

As noted in 4.2, the use of MySQL client library often generate duplicate TestRoutine and
TestAction entries in HPF DB. The sync.php will clean up any duplicates from the routine
and action tables and ensure that the front-end system can run smoothly. This is a stand-
alone script that should be called only once, not by the back-end script shell.

4.6 mailer.php

This PHP script sends a warning message in a tabular form to subscribers who are
interested in HDF5 performance. For each routine, action, machine, HDF5 version and
instance, the script checks if there is any 20% or more increase(performance loss) or
decrease(performance gain) in a new record vs moving averages of previous records.
Currently, yesterday's record is compared against the average of last 7 days and last 7 days
of average is compared against the last 30 days of average excluding the current one. That
is, a day 10 record is compared against day 3 to 9 and a day 1 to 7 record is compared
against the day 1-30 record of previous month.

Such comparison is actually done in analyzer.php and it is included in the mailer.php at
the top. Thus, if you want to change the parameters for comparison, you need to modify
analyzer.php.

The mailer.php retrieves subscriber list from subscribe table. Retrieval is actually done in
a function called get_subscribers() in util.php. The current implementation retrieves all
subscribers in a single string by appending one by one and send a bulk mail by putting the
long string in To: line of e-mail. This method can be improved by sending one e-mail per
subscriber in the future.

Again, like sync.php, this is a stand-alone script that should be called only once, not by
the back-end script shell.

	HDF5 Performance Framework Back-End System
	1 Introduction to HPF Back-End System
	2 Anatomy of Shell Script
	2.1 Customization
	2.2 Functionality

	3 Scheduling Cron Job
	4 PHP Scripts
	4.1 svn.php
	4.2 TestInstance.php
	4.3 checker_best.php
	4.4 environment.php
	4.5 sync.php
	4.6 mailer.php

