
HDF5 Performance Testing Library

1. Introduction

The HDF5 performance testing library provides HDF5 users the required APIs to

• Measure the performance of their routines
• Store, retrieve, update, and remove the performance information into external storage

system such as file and database
• Utility functions to interact with command line input

The library is implemented using C++, but C API is also provided. In the following sections,
we'll explain how the library works.

2. Performance Testing Information

The Figure 1 at the end of this section depicts the class diagram for performance testing
information. In library, performance testing information has three levels. The first level is the
program level containing information about a program that uses HDF5 library. This level is
represented by TestRoutine. At the second level, there are functions of a program that uses
HDF5 library. This level is represented by TestAction. Obviously, each TestRoutine must have
one or more TestAction. The next level belongs to each execution of a function. Clearly, each
function in different execution due to different settings could have different results. This level is
implemented by TestInstance. The same relationship between TestRoutine and TestAction
goes for TestAction and TestInstance.

2.1 Base Class PO

Since all the performance testing classes are persistent and could be stored in database, they all
subclass PO which provides the basic methods for persistent classes. These methods set and get
the unique Id of an object:

Class PO

int getID();
void setID(int id);

2.2 Derived Class Env and EnvOwner



The other common property among all the testing information classes is that they all could have
arbitrary number of name, value pairs or settings. Usually these are information about a program,
function, or even each execution of a function that are in the form of name, value pair. They are
very flexible in terms of type and number. For instance, the operating system program is running
under the hardware platform, and so on and so forth. These input and environmental settings for
the programSetting is implemented by Env class:

Class Env

void set(char* name, char*
value);
char* get(char* name);
bool remove(char* name);
bool empty();

The class Env implements the required method to add, update, and remove a setting and could
have any number of settings.

Due to the common property mentioned above, all testing information classes subclass from
class EnvOwner which has a 1-to-1 association relationship with Env (aggregates one Env ).
The EnvOwner provides the methods to access its aggregated Env object:

Class EnvOwner

void setSetting (char* name, char*
value);
char* getSetting(char* name);
bool removeSetting(char* name);

2.3 Derived Class TestRoutine

The root object for performance testing information is TestRoutine. TestRoutine represents a
user’s program that uses HDF5 library. It includes the information about the testing program
including name, description, and version of the program. Developer could changes these values
using, for example, setName() and getName() for changing the name field. Each TestRoutine
object must have unique name.

TestRoutine object has a collection of different TestActions. A TestAction could be observed
as a function or a meaningful code fragment in a test program or routine. Therefore,
TestRoutine has the required methods to add, remove, or get its TestAction objects. Each
TestAction object of a TestRoutie object must have a unique name.



Class TestRoutine: public EnvOwner, public PO

void setName(char* name);
char* getName();
void setDescription(char* desc);
char* getDescription();
void setVersion();
char* getVerson();

//Methods to access and/or manipulate TestAction members
void addAction(TestAction& action);
void removeAction(vector<TestAction>::iterator pos);
TestAction* getAction(char* actionName);
TestAction* getAction(vector<TestAction>::iterator pos);
vector<TestAction>::iterator beginActions();
vector<TestAction>::iterator endActions();

2.4 Derived Class TestAction

TestAction class has the same general functions as TestRoutine to set and/or get its name and
description. As TestRoutine, TestAction contains one or more TestInstance objects.
TestInstance class represents each execution of a TestAction. TestAction provides necessary
methods to access or manipulate its TestInstance objects.

Class TestAction: public EnvOwner, public PO



void setName(char* name);
char* getName();
void setDescription(char* desc);
char* getDescription();

//Methods to access and manipulate TestInstance members
Void addInstance(TestInstance& instance);
Void removeInstance(vector<TestInstance>::iterator pos);
TestInstance* getInstance(char* instanceName);
TestInstance *getInstance(vector<TestInstance>::iterator pos);
vector<TestInstance>::iterator beginInstance();
vector<TestInstance>::iterator endInstanes();

2.5 Derived Class TestInstance

Since TestInstance depicts an execution of a TestAction, it has related properties: name of the
dataset used, the dataset optional description, date, host or machine TestAction was executed on,
the version of the HDF5 library used in the run, and the result. The date of execution makes a
TestInstance object among other objects in the same TestAction unique.

Class TestInstance: public EnvOwner, public PO

void setDatasetName(char* name);
char* getDatasetName();
void setDate(Date date);
Date getDate();
void setLibVersion(char* libVersion);
char* getLibVersion();
void setHost(char* host);
char* getHost();
void setDatasetDescription(const char* datasetDescription);
char* getDatasetDescription();
void setResult(double result);
double getResult();



Figure1. The class relationship diagram for test information classes



3. Performance Information Storage

In order to store the above objects to the external storage and getting different reports afterward,
Storage class has been implemented. This abstract class encapsulates the notion of storage by its
basic methods.

Class Storage

virtual void open(char* server, char* name, bool append=false,
char* user=NULL, char* passwd, unsigned int port=0);
virtual bool isOpen();
virtual void write(TestRoutine* routine);
virtual void close();

The write method implementation in its concrete subclasses must write the TestRoutine object
as well as its aggregated objects like TestAction to the external storage. The concrete
implementation of Storage is FileStorage which stores the information to a single file on a local
file system. Its open method ignores the user, password, and port parameters.

Class FileStorage: public Storage

virtual void open(char* path, char* name, bool append=false,
char* user=NULL, char* passwd, unsigned int port=0);
virtual bool isOpen();
virtual void write(TestRoutine* routine);
virtual void close();

Random access storage systems like relational database systems have more functionality. The
abstract class RandomAccessStorage which is in turn a subclass of Storage class, adds more
methods to the Storage class for finding, updating, and removing the objects from random
access storages.

Class RandomAccessStorage: public Storage

virtual TestRoutine* findByName(char*
routineName);
virtual bool update(TestRoutine* routine);
virtual void remove(char* routineName);



A concrete subclass of this class has been implemented for MySQL database system, named
MySQLStorage.

Class MySQLStorage: public RandomAccessStorage

virtual TestRoutine* findByName(char*
routineName);
virtual bool update(TestRoutine* routine);
virtual void remove(char* routineName);

Choosing the right storage class would be hard for the API user due to the expected increase of
the number of storage system types that the library would support. Therefore, StorageManager
class encapsulates all the classes above and exposes unified methods to the user. In this way, user
does not need to know anything about different storage handling classes.

Class StorageManager

Void open(char* server, char* name, bool append=false,
char* user=NULL, char* passwd, unsigned int port=0);
bool isOpen();
void write(TestRoutine* routine);
void close();
TestRoutine* findByName(char* routineName);
bool update(TestRoutine* routine);
void remove(char* routineName);





Figure2. The class relationship diagram for the storage classes

4. Performance Measurement

The library also provides some utility functions to measure time spent on an operation. The
TestUtil class implements the following methods.

Class TestUtil

static void startTimer(timeval* start);
static double endTimer(timeval start);
static double random(long int limit);

In order to measure the spent time for an operation, user could call startTimer method by
passing a standard timval structure described in sys/time.h header file. After finishing the
operation, a call to the endTimer method with the same argument, returns the time spent on the
operation. The method random returns a random number within the [0,limit).


	HDF5 Performance Testing Library
	1. Introduction
	2. Performance Testing Information
	3. Performance Information Storage
	4. Performance Measurement


