
HDF5 Performance Framework C API

This document provides a description of C APIs that are essential for creating custom benchmark
programs.

HPF C API is composed of four parts: general, command line, storage and utility.

1 General API

Name:
• H5Perf_init

Signature:
• int H5Perf_init()

Purpose:
• Initializes the C API by initializing the required data structures like look-up tables to

manage handlers.

Parameters:
• None

Returns:
• (-1) if fails, zero otherwise

Name:
• H5Perf_end

Signature:
• int H5Perf_end()

Purpose:
• Closes the C API library. This must be called before a program terminates.

Parameters:
• None

Returns:
• (-1) if fails, greater or equal to zero otherwise

2 Command Line API

These APIs are obsolete. Feel free to ignore them.

Name:
• H5Perf_createCommandLine

Signature:
• long int H5Perf_createCommandLine(const char* message, const char* version)

Purpose:
• Creates a command line object and returns its handle for user's future calls. The

command line object represents the specifications of all command line arguments. The h
flag is provided by default for help and usage message.

Returns:
• (-1) if fails, a valid handle otherwise (greater or equal to zero)

Name:
• H5Perf_addCharArgument

Signature:
• int H5Perf_addCharArgument(long int cmd_handle, const char* flag, const char* name,

const char* desc, int req, char value)

Purpose:
• Adds an argument to the previously created command line Object referenced by

cmd_handle. The command line object must be already created using
H5Perf_createSetting() function. The type of the argument is character.

Parameters:
• cmd_handle The command line object handle
• flag The short key for the argument (like -m)
• name: The long key for the argument (like --measure)
• desc The argument description printed when using the default help option by user
• req Non-zero for mandatory arguments
• value Default value when nothing is provided

Returns:
• (-1) if fails, zero otherwise

Name:
• H5Perf_addIntArgument

Signature:
• int H5Perf_addIntArgument(long int cmd_handle, const char* flag, const char* name,

const char* desc, int req, int value)
Purpose:

• Adds an argument to the previously created command line Object referenced by
cmd_handle. The command line object must be created before using
H5Perf_createSetting() function. The type of the argument is integer.

Parameters:
• cmd_handle The command line object handle
• flag The short key for the argument (like -m)
• name The long key for the argument (like --measure)
• desc The argument description printed when using the default help option by user
• req Non-zero for mandatory arguments
• value Default value when nothing is provided

Returns:
• (-1) if fails, zero otherwise

Name:
• H5Perf_addStringArgument

Signature:
• int H5Perf_addStringArgument(long int cmd_handle, const char* flag, const char*

name, const char* desc, int req, char* value)

Purpose:
• Adds an argument to the previously created command line Object referenced by

cmd_handle. The command line object must be created before using
H5Perf_createSetting() function. The type of the argument is string.

Parameters:
• cmd_handle The command line object handle
• flag The short key for the argument (like -m)
• name The long key for the argument (like --measure)

• desc The argument description printed when using the default h option by user
• req Non-zero for mandatory arguments
• value Default value when nothing is provided

Returns:
• (-1) if fails, zero otherwise

Name:
• H5Perf_parse

Signature
• int H5Perf_parse(long int cmd_handle,int argc, char** argv)

Purpose:
• Parses an instance of command line complying with the defined command line object

and provides the values for future use by user through argument getter functions.
Parameters:

• cmd_handle The command line object handle
• argc The standard main function argc parameter.
• argv The standard main function argv parameter.

Returns:
• (-1) if fails, zero otherwise

Name:
• H5Perf_getCharValue

Signature:
• int H5Perf_getCharValue(long int cmd_handle, const char* flag, char* value)

Purpose:
• Gets the parsed command line character argument

Parameters:
• cmd_handle The command line object handle
• flag The short key for the argument (like -m)
• value Argument value

Returns:
• (-1) if fails, zero otherwise

Name:
• H5Perf_getIntValue

Signature:
• int H5Perf_getIntValue(long int cmd_handle, const char* flag, int* value)

Purpose:
• Gets the parsed command line integer argument

Parameters:
• cmd_handle The command line object handle
• flag The short key for the argument (like -m)
• value Argument value

Returns:
• (-1) if fails, zero otherwise

Name:
• H5Perf_getStringValue

Signature:
• int H5Perf_getStringValue(long int cmd_handle, const char* flag, char* value)

Purpose:
• Gets the parsed command line string argument

Parameters:
• cmd_handle The command line object handle
• flag The short key for the argument (like -m)
• value Argument value

Returns:
• (-1) if fails, zero otherwise

3 Storage API

Name:
• long int H5Perf_createSetting()

Purpose:

• Creates a setting object and returns its handle for user's future calls.

Parameters:
• None

Returns:
• (-1) if fails, a valid handle otherwise (greater or equal to zero)

Name:
• H5Perf_addSetting

Signature:
• int H5Perf_addSetting(long int setting_handle, char* name, char* value)

Purpose:
• Adds an entry to a previously created setting object. The object must be created before,

using the H5Perf_createSetting() function.
Parameters:

• setting_handle The setting object handle
• name Name of the environmetal setting
• value Value of the environmetal setting

Returns:
• (-1) if fails, zero otherwise

Name:
• H5Perf_setSetting

Signature:
• int H5Perf_setSetting(long int setting_handle, char* name, char* value)

Purpose:
• Sets an entry of the previously created Setting Object referenced by handle. The object

must be already created using H5Perf_createSetting() function, and the name must be
added to the created object before using H5Perf_addSetting() function.That is you need
to call H5Perf_createSetting() first, H5Perf_addSetting() second, and
H5Perf_setSetting() at the end.

Parameters:
• setting_handle The setting object handle

• name Name of the environmental setting
• value Value of the environmental setting

Returns:
• (-1) if fails, zero otherwise

Name:
• H5Perf_createRoutine

Signature:
• long int H5Perf_createRoutine()

Parameters:
• None

Purpose:
• Creates a Test Routine object and returns its handle for user's future calls.

Returns:
• (-1) if fails, a valid handle otherwise (greater or equal to zero)

Name:
• H5Perf_setRoutine

Signature:
• int H5Perf_setRoutine(long int routine_handle,char* name, char* description, char*

version, long int setting_handle)
Purpose:

• Sets a previously created Test Routine object referenced by routine_handle. The object
must be created before using H5Perf_createRoutine() function.

Parameters:
• routine_handle The Test Routine object handle
• name Name of the Test Routine
• description Description of the Test Routine
• version Version of the Test Routine
• setting_handle handler for Test Routine setting

Returns:
• (-1) if fails, greater or equal to zero otherwise

Name:
• H5Perf_addAction

Signature:
• int H5Perf_addAction(long int routine_handle, char* name, char* description, long int

setting_handle)

Purpose:
• Adds Test Action information to a previously created Test Routine object referenced by

routine_handle. The object must be created before using H5Perf_createRoutine() and
H5Perf_setRoutine() functions.

Parameters:
• routine_handle The TestRoutine object handle
• name Name of the Test action
• description Description of the Test Action
• settings_handle Handler for Test Action setting

Returns:
• (-1) if fails, greater or equal to zero otherwise

Name:
• H5Perf_addInstance

Signature:
• int H5Perf_addInstance(long int routine_handle,char* action_name,char* datasetName,

char* datasetDesc,const char* host, unsigned int year,unsigned int month,unsigned int
day,unsigned int hour,unsigned int minute, unsigned int second, char* libVersion,
double result, long int setting_handle)

Purpose:
• Adds Test instance information to a previously created Test Routine object referenced

by routine_handle. The object must be created before using H5Perf_createRoutine() and
H5Perf_setRoutine() functions. Also it must already have one action with name
action_name set by H5Perf_addAction function.

Parameters:
• routine_handle The TestRoutine object handle
• action_name Name of the Test action
• datasetName Name of the Test Instance dataset
• datasetDesc Description of the Test Instance dataset
• host The host name this instance is running on
• year,.. The running date
• libVersion HDF5 library version used
• result The rest result

• setting_handle Handler for Test Instance setting
Returns:

• (-1) if fails, greater or equal to zero otherwise

Name:
• H5Perf_createOneInstanceRoutine

Signature:
• long int H5Perf_createOneInstanceRoutine(char* routineName, char* datasetName,

char* datasetDesc,const char* host, unsigned int year, unsigned int month, unsigned int
day, unsigned int hour, unsigned int minute, unsigned int second, char* libVersion,
double result, long int setting_handle)

Purpose:
• Creates a Test Routine object with just one Test Instance and returns its handle. The

handle could be used for user's future call on this Test Routine object by
H5Perf_setOneInstanceRoutineResult function. Using this function, user could ignore
the usual order of creating/adding Test objects and directly creates a Test Instance
object.

• This API is obsolete. Feel free to ignore this API.

Parameters:
• routine_name Name of the Test Routine
• datasetName Name of the Test Instance dataset
• datasetDesc Description of the Test Instance dataset
• host The host name this instance is running on
• year,.. The running date
• libVersion HDF5 library version used
• setting_handle Handler for Test Instance setting

Returns:
• (-1) if fails, a valid handle otherwise (greater or equal to zero)

Name:
• H5Perf_createFileHandle

Signature:
• long int H5Perf_createFileHandle(char* parent,char* name, int append)

Purpose:
• Creates a File handle and returns it for user's future calls. This method also opens the

file.
Parameters:

• parent The file parent directory
• name The file name
• append Non-zero to append to write the end of previously created file.

Returns:
• (-1) if fails, a valid handle otherwise (greater or equal to zero)

Name:
• H5Perf_createMySQLHandle

Signature:
• long int H5Perf_createMySQLHandle(char* server,char* dbname, char* uid, char*

passwd, int port)

Purpose:
• Creates a handle to MySQL database and saves it for user's future calls. This method

also opens a connection to the DBMS.
Parameters:

• server The server host address
• dbname The database name
• uid User name
• passwd Password
• port Port number of the DBMS on the server host

Returns:
• (-1) if fails, a valid handle otherwise (greater or equal to zero)

Name:
• H5Perf_close

Signature:
• int H5Perf_close(long int handle)

Purpose:

• Closes the object referenced by the handle and frees its dependent resources. If the
object is a storage system, the connection will be closed (file handle or database
connection).

Parameters:
• handle The handle to the previously created object

Returns:
• (-1) if fails, greater or equal to zero otherwise

Name:
• H5Perf_find_routine

Signature:
• long int H5Perf_find_routine(long int randomStorage_handle, char* routine_name)

Purpose:
• Finds the routine object with name routine_name as well as its dependent objects from

the storage that must be random access storage like MySQL.

Parameters:
• randomStorage_hanlde The handle to the previously created random access storage

object (MySQL)
• routine_name The name of the routine object

Returns:
• (-1) if fails, a valid handle otherwise (greater or equal to zero)

Name:
• H5Perf_find_action

Signature:
• long int H5Perf_find_action(long int routine_handle, char* action_name)

Purpose:
• Finds the action object with name action_name from a storage.

Parameters:
• routine_handle The handle to the previously created routine object
• action_name The name of the action object

Returns:
• (-1) if fails, a valid handle otherwise (greater or equal to zero)

Name:
• H5Perf_find_instance

Signature:
• long int H5Perf_find_instance(long int action_handle, char* instance_name)

Purpose:
• Finds the instance object with name instnace_name from a storage.

Parameters:
• action_hanlde The handle to the previously created action object
• instance_name The name of the instance object

Returns:
• (-1) if fails, a valid handle otherwise (greater or equal to zero)

Name:
• H5Perf_write

Signature:
• int H5Perf_write (long int storage_handle, long int routine_handle)

Purpose:
• Stores the routine object as well as its dependent objects information referenced by

routine_handle to the storage that could be file or MySQL DBMS referenced by
randomStorage_handle.

Parameters:
• randomStorage_hanlde The handle to the previously created storage object (File/

MySQL)
• routine_handle The handle to the routine object

Returns:
• (-1) if fails, greater or equal to zero otherwise

Name:
• H5Perf_update

Signature:
• int H5Perf_update (long int randomStorage_handle, long int routine_handle)

Purpose:
• Updates the routine object as well as its dependent objects information referenced by

routine_handle stored in a random access storage like MySQL DBMS referenced by
randomStorage_handle.

Parameters:
• randomStorage_hanlde The handle to the previously created random access storage

object (MySQL)
• routine_handle The handle to the routine object

Returns:
• (-1) if fails, greater or equal to zero otherwise

Name:
• H5Perf_remove

Signature:
• int H5Perf_remove (long int randomStorage_handle, char* routine_name)

Purpose:
• Removes the routine object as well as its dependent objects information with name

routine_name stored in a random access storage like MySQL DBMS referenced by
randomStorage_handle.

Parameters:
• randomStorage_hanlde The handle to the previously created random access storage

object (MySQL)
• routine_handle The handle to the routine object

Returns:
• (-1) if fails, greater or equal to zero otherwise

4 Utility API

Name:
• H5Perf_startTimer

Signature:

• void H5Perf_startTimer(struct timeval* timeval_start)

Purpose:
• Starts a timer to measure up a time interval

Parameters:
• timeval_start Standard timeval struct according to sys/time.h

Name:
• H5Perf_startUsageTimer

Signature:
• void H5Perf_startUsageTimer()

Purpose:
• Starts a timer based on getrusage() to measure up a time interval

Name:
• H5Perf_endTimer

Signature:
• double H5Perf_endTimer(struct timeval start)

Purpose:
• Stops the timer to measure up a time interval

Parameters:
• timeval_start Standard timeval struct according to sys/time.h passed to the

H5Perf_startTimer before.

Returns:
• The time interval value

Name:
• H5Perf_endUsageTimer

Signature:

• void H5Perf_endUsageTimer()

Purpose:
• Stops the getrusage()-based timer to measure up a time interval

Name:
• H5Perf_getUserTime

Signature:
• double H5Perf_getUserTime()

Purpose:
• gets the elapsed user time between H5Perf_startUsageTimer() and

H5Perf_endUsageTimer() calls.

Returns:
• The user time interval value
• This measurement is less susceptible to system load.

Name:
• H5Perf_getSystemTime

Signature:
• double H5Perf_getSystemTime()

Purpose:
• gets the elapsed system time between H5Perf_startUsageTimer() and

H5Perf_endUsageTimer() calls.
• This measurement varies a lot depending on system load.

Returns:
• The system time interval value

Name:
• H5Perf_getRandom

Signature:
• double H5Perf_getRandom(long int limit)

Purpose:
• Generates a random number in the range of [0,limit)

Parameters:
• limit The excluded maximum value of generated random number.

Returns:
• A random number

	HDF5 Performance Framework C API
	1 General API
	2 Command Line API
	3 Storage API
	4 Utility API

