HDF5 Performance Framework C API

This document provides a description of C APIs that are essential for creating custom benchmark
programs.

HPF C API is composed of four parts: general, command line, storage and utility.
1 General API

Name:
« HS5Perf init

Signature:
* int H5Perf init()

Purpose:
* Initializes the C API by initializing the required data structures like look-up tables to
manage handlers.

Parameters:
e None

Returns:
 (-1) if fails, zero otherwise

Name:
» H5Perf end

Signature:
 int H5Perf end()

Purpose:
* Closes the C API library. This must be called before a program terminates.

Parameters:
e None

Returns:
* (-1) if fails, greater or equal to zero otherwise

2 Command Line API

These APIs are obsolete. Feel free to ignore them.

Name:
* HS5Perf createCommandLine

Signature:
* long int H5Perf createCommandLine(const char* message, const char* version)

Purpose:
 Creates a command line object and returns its handle for user's future calls. The
command line object represents the specifications of all command line arguments. The 4
flag is provided by default for help and usage message.

Returns:
 (-1) if fails, a valid handle otherwise (greater or equal to zero)

Name:
« HS5Perf addCharArgument

Signature:
+ int H5Perf addCharArgument(long int cmd handle, const char* flag, const char* name,
const char* desc, int req, char value)

Purpose:
* Adds an argument to the previously created command line Object referenced by
cmd _handle. The command line object must be already created using
H5Perf createSetting() function. The type of the argument is character.

Parameters:
* cmd_handle The command line object handle
* flag The short key for the argument (like -m)
» name: The long key for the argument (like --measure)
* desc The argument description printed when using the default help option by user
 req Non-zero for mandatory arguments
* value Default value when nothing is provided

Returns:
 (-1) if fails, zero otherwise

Name:
» HS5Perf addIntArgument

Signature:
+ int H5Perf addIntArgument(long int cmd handle, const char* flag, const char* name,
const char* desc, int req, int value)
Purpose:
* Adds an argument to the previously created command line Object referenced by
cmd_handle. The command line object must be created before using
H5Perf createSetting() function. The type of the argument is integer.

Parameters:
* cmd_handle The command line object handle
* flag The short key for the argument (like -m)
» name The long key for the argument (like --measure)
* desc The argument description printed when using the default help option by user
 req Non-zero for mandatory arguments
* value Default value when nothing is provided

Returns:
 (-1) if fails, zero otherwise

Name:
» HS5Perf addStringArgument

Signature:
+ int H5Perf addStringArgument(long int cmd_handle, const char* flag, const char*
name, const char* desc, int req, char* value)

Purpose:
* Adds an argument to the previously created command line Object referenced by
cmd_handle. The command line object must be created before using
H5Perf createSetting() function. The type of the argument is string.
Parameters:
* cmd_handle The command line object handle
* flag The short key for the argument (like -m)
» name The long key for the argument (like --measure)

* desc The argument description printed when using the default h option by user
 req Non-zero for mandatory arguments
* value Default value when nothing is provided

Returns:
 (-1) if fails, zero otherwise

Name:
» HS5Perf parse

Signature
+ int H5Perf parse(long int cmd handle,int argc, char®** argv)

Purpose:

+ Parses an instance of command line complying with the defined command line object

and provides the values for future use by user through argument getter functions.

Parameters:

* cmd_handle The command line object handle

* argc The standard main function argc parameter.

* argv The standard main function argv parameter.
Returns:

 (-1) if fails, zero otherwise

Name:
» HS5Perf getCharValue

Signature:
+ int H5Perf getCharValue(long int cmd handle, const char* flag, char* value)

Purpose:
* Gets the parsed command line character argument

Parameters:
* cmd_handle The command line object handle
* flag The short key for the argument (like -m)
* value Argument value

Returns:
 (-1) if fails, zero otherwise

Name:
» HS5Perf getIntValue

Signature:
+ int H5Perf getIntValue(long int cmd handle, const char* flag, int* value)

Purpose:
* Gets the parsed command line integer argument

Parameters:
* cmd_handle The command line object handle
* flag The short key for the argument (like -m)
* value Argument value

Returns:
 (-1) if fails, zero otherwise

Name:
» HS5Perf getStringValue

Signature:
 int H5Perf getStringValue(long int cmd handle, const char* flag, char* value)

Purpose:
* Gets the parsed command line string argument

Parameters:
* cmd_handle The command line object handle
* flag The short key for the argument (like -m)
* value Argument value

Returns:
 (-1) if fails, zero otherwise

3 Storage API

Name:
* long int H5Perf createSetting()

Purpose:

 Creates a setting object and returns its handle for user's future calls.

Parameters:
 None

Returns:
 (-1) if fails, a valid handle otherwise (greater or equal to zero)

Name:
* HS5Perf addSetting

Signature:
 int H5Perf addSetting(long int setting_handle, char®* name, char* value)

Purpose:
+ Adds an entry to a previously created setting object. The object must be created before,
using the H5Perf createSetting() function.
Parameters:
* setting handle The setting object handle
» name Name of the environmetal setting
* value Value of the environmetal setting

Returns:
 (-1) if fails, zero otherwise

Name:
» HS5Perf setSetting

Signature:
 int H5Perf setSetting(long int setting handle, char* name, char* value)

Purpose:

+ Sets an entry of the previously created Setting Object referenced by handle. The object
must be already created using H5Perf createSetting() function, and the name must be
added to the created object before using H5Perf addSetting() function.That is you need
to call H5Perf createSetting() first, HSPerf addSetting() second, and
H5Perf setSetting() at the end.

Parameters:
* setting handle The setting object handle

» name Name of the environmental setting

* value Value of the environmental setting
Returns:

 (-1) if fails, zero otherwise

Name:
» HS5Perf createRoutine

Signature:
* long int H5Perf createRoutine()

Parameters:
 None

Purpose:

* Creates a Test Routine object and returns its handle for user's future calls.
Returns:

 (-1) if fails, a valid handle otherwise (greater or equal to zero)

Name:
* HS5Perf setRoutine

Signature:
+ int H5Perf setRoutine(long int routine handle,char* name, char* description, char*
version, long int setting_handle)
Purpose:
* Sets a previously created Test Routine object referenced by routine_handle. The object
must be created before using H5Perf createRoutine() function.

Parameters:
* routine_handle The Test Routine object handle
» name Name of the Test Routine
* description Description of the Test Routine
* version Version of the Test Routine
* setting handle handler for Test Routine setting

Returns:
* (-1) if fails, greater or equal to zero otherwise

Name:
* HS5Perf addAction

Signature:
+ int H5Perf addAction(long int routine handle, char* name, char* description, long int
setting_handle)

Purpose:
» Adds Test Action information to a previously created Test Routine object referenced by
routine _handle. The object must be created before using H5Perf createRoutine() and
H5Perf setRoutine() functions.

Parameters:
 routine_handle The TestRoutine object handle
+ name Name of the Test action
* description Description of the Test Action
« settings handle Handler for Test Action setting
Returns:
* (-1) if fails, greater or equal to zero otherwise

Name:
» HS5Perf addInstance

Signature:

+ int H5Perf addInstance(long int routine handle,char* action_name,char* datasetName,
char* datasetDesc,const char* host, unsigned int year,unsigned int month,unsigned int
day,unsigned int hour,unsigned int minute, unsigned int second, char* libVersion,
double result, long int setting_handle)

Purpose:
» Adds Test instance information to a previously created Test Routine object referenced
by routine_handle. The object must be created before using H5Perf createRoutine() and
H5Perf setRoutine() functions. Also it must already have one action with name
action_name set by H5Perf addAction function.
Parameters:
* routine_handle The TestRoutine object handle
* action_name Name of the Test action
* datasetName Name of the Test Instance dataset
* datasetDesc Description of the Test Instance dataset
* host The host name this instance is running on
* year,.. The running date
* libVersion HDFS5 library version used
* result The rest result

setting _handle Handler for Test Instance setting

Returns:

Name:

(-1) if fails, greater or equal to zero otherwise

H5Perf createOnelnstanceRoutine

Signature:

long int H5Perf createOnelnstanceRoutine(char* routineName, char* datasetName,
char* datasetDesc,const char® host, unsigned int year, unsigned int month, unsigned int
day, unsigned int hour, unsigned int minute, unsigned int second, char* libVersion,
double result, long int setting_handle)

Purpose:

Creates a Test Routine object with just one Test Instance and returns its handle. The
handle could be used for user's future call on this Test Routine object by

H5Perf setOnelnstanceRoutineResult function. Using this function, user could ignore
the usual order of creating/adding Test objects and directly creates a Test Instance
object.

This API is obsolete. Feel free to ignore this API.

Parameters:

routine_name Name of the Test Routine
datasetName Name of the Test Instance dataset
datasetDesc Description of the Test Instance dataset
host The host name this instance is running on
year,.. The running date

libVersion HDFS5 library version used

setting _handle Handler for Test Instance setting

Returns:

Name:

(-1) if fails, a valid handle otherwise (greater or equal to zero)

H5Perf createFileHandle

Signature:

long int H5Perf createFileHandle(char* parent,char* name, int append)

Purpose:
* Creates a File handle and returns it for user's future calls. This method also opens the
file.
Parameters:
* parent The file parent directory
» name The file name
* append Non-zero to append to write the end of previously created file.

Returns:
 (-1) if fails, a valid handle otherwise (greater or equal to zero)

Name:
* HS5Perf createMySQLHandle

Signature:
* long int H5Perf createMySQLHandle(char* server,char* dbname, char* uid, char*
passwd, int port)

Purpose:
* Creates a handle to MySQL database and saves it for user's future calls. This method
also opens a connection to the DBMS.
Parameters:
+ server The server host address
* dbname The database name
* uid User name
* passwd Password
* port Port number of the DBMS on the server host
Returns:
 (-1) if fails, a valid handle otherwise (greater or equal to zero)

Name:
» H5Perf close

Signature:
+ int H5Perf close(long int handle)

Purpose:

* Closes the object referenced by the handle and frees its dependent resources. If the
object is a storage system, the connection will be closed (file handle or database
connection).

Parameters:
* handle The handle to the previously created object

Returns:
* (-1) if fails, greater or equal to zero otherwise

Name:
* HS5Perf find routine

Signature:
* long int H5Perf find routine(long int randomStorage handle, char® routine name)

Purpose:
+ Finds the routine object with name routine name as well as its dependent objects from
the storage that must be random access storage like MySQL.

Parameters:
» randomStorage hanlde The handle to the previously created random access storage
object (MySQL)
* routine_name The name of the routine object
Returns:
 (-1) if fails, a valid handle otherwise (greater or equal to zero)

Name:
» HS5Perf find action

Signature:
* long int H5Perf find action(long int routine handle, char* action_name)

Purpose:
* Finds the action object with name action name from a storage.

Parameters:
* routine_handle The handle to the previously created routine object
* action_name The name of the action object

Returns:
 (-1) if fails, a valid handle otherwise (greater or equal to zero)

Name:
» HS5Perf find instance

Signature:
* long int H5Perf find instance(long int action_handle, char* instance name)

Purpose:
* Finds the instance object with name instnace_name from a storage.

Parameters:
* action_hanlde The handle to the previously created action object
* instance _name The name of the instance object

Returns:
 (-1) if fails, a valid handle otherwise (greater or equal to zero)

Name:
* HS5Perf write

Signature:
* int H5Perf write (long int storage handle, long int routine handle)

Purpose:

« Stores the routine object as well as its dependent objects information referenced by
routine handle to the storage that could be file or MySQL DBMS referenced by
randomStorage handle.

Parameters:

» randomStorage hanlde The handle to the previously created storage object (File/
MySQL)

* routine_handle The handle to the routine object

Returns:
* (-1) if fails, greater or equal to zero otherwise

Name:
* HS5Perf update

Signature:
+ int H5Perf update (long int randomStorage handle, long int routine handle)

Purpose:

» Updates the routine object as well as its dependent objects information referenced by
routine handle stored in a random access storage like MySQL DBMS referenced by
randomStorage handle.

Parameters:

» randomStorage hanlde The handle to the previously created random access storage
object (MySQL)

* routine_handle The handle to the routine object

Returns:
* (-1) if fails, greater or equal to zero otherwise

Name:
* HS5Perf remove

Signature:
+ int H5Perf remove (long int randomStorage handle, char* routine name)

Purpose:

« Removes the routine object as well as its dependent objects information with name
routine_name stored in a random access storage like MySQL DBMS referenced by
randomStorage handle.

Parameters:

» randomStorage hanlde The handle to the previously created random access storage
object (MySQL)

* routine_handle The handle to the routine object

Returns:
* (-1) if fails, greater or equal to zero otherwise

4 Utility API

Name:
* HS5Perf startTimer

Signature:

+ void H5Perf startTimer(struct timeval* timeval start)

Purpose:
+ Starts a timer to measure up a time interval
Parameters:
* timeval start Standard timeval struct according to sys/time.h

Name:
» HS5Perf startUsageTimer

Signature:
+ void H5Perf startUsageTimer()

Purpose:
« Starts a timer based on getrusage() to measure up a time interval

Name:
« HS5Perf endTimer

Signature:
* double H5Perf endTimer(struct timeval start)

Purpose:
* Stops the timer to measure up a time interval

Parameters:
* timeval start Standard timeval struct according to sys/time.h passed to the

H5Perf startTimer before.

Returns:
e The time interval value

Name:
* HS5Perf endUsageTimer

Signature:

 void H5Perf endUsageTimer()

Purpose:
+ Stops the getrusage()-based timer to measure up a time interval

Name:
» HS5Perf getUserTime

Signature:
* double H5Perf getUserTime()

Purpose:
« gets the elapsed user time between H5Perf startUsageTimer() and
H5Perf endUsageTimer() calls.

Returns:
* The user time interval value
 This measurement is less susceptible to system load.

Name:
» HS5Perf getSystemTime

Signature:
* double H5Perf getSystemTime()

Purpose:
* gets the elapsed system time between H5Perf startUsageTimer() and
H5Perf endUsageTimer() calls.
 This measurement varies a lot depending on system load.

Returns:
* The system time interval value

Name:
* HS5Perf getRandom

Signature:
» double H5Perf getRandom(long int limit)

Purpose:

» Generates a random number in the range of [0,limit)
Parameters:

* [imit The excluded maximum value of generated random number.
Returns:

* A random number

	HDF5 Performance Framework C API
	1 General API
	2 Command Line API
	3 Storage API
	4 Utility API

